Jan 9, 2025 · Warehouses are transforming into sustainability leaders with the adoption of solar energy. From cutting energy costs by 20–40% to aligning with WAIRE compliance, solar is a
Jun 9, 2025 · Optimize charging installation with the highest regard for safety, speed and quality through utility upgrades with the shortest lead times and faster access to charging hardware
Jan 8, 2025 · Solar-powered construction sites work on a combination of three components; solar panels, battery storage, and solar generators, each performing its part in providing clean
If a utility restricts the exports from a facility to the grid, the use of on-site storage alongside solar PV can provide a solution to avoid costly infrastructure upgrades, thus increasing the feasibility of larger on-site PV installations.
To achieve sustainability goals while meeting the increasing electricity demands of electrification, organizations are pairing on-site solar PV generation with on-site energy storage. These systems, which are considered as “behind-the-meter” (BTM) systems, allow facilities to maximize the benefits of on-site renewable generation.
In partnership with The Energy Consortium (TEC), we’ve helped the University of Wales Trinity Saint David to install solar panels on multiple rooftops, so they can generate their own renewable energy. With energy prices where they are the installation of solar PV is a cost-efficient option and supports the university’s sustainability ambitions.
For the scenario represented in the graph, an on-site solar PV system allows the facility to reduce the amount of electricity drawn from the grid during the middle of the day. Increasing the amount of solar PV production on-site can provide additional cost and emission reductions and resiliency benefits for facilities.
Solar panels can be installed on the majority of roof structures and materials. Our partners will carry out detailed structural surveys to enable them to maximise the onsite installation and generation, whilst protecting the integrity of your building. A solar system can be constructed on available land space.
Increasing the amount of solar PV production on-site can provide additional cost and emission reductions and resiliency benefits for facilities. However, the additional generation that can result from larger systems during peak daylight hours must be exported or managed through curtailment on-site.
The global residential solar storage and inverter market is experiencing rapid expansion, with demand increasing by over 300% in the past three years. Home energy storage solutions now account for approximately 35% of all new residential solar installations worldwide. North America leads with 38% market share, driven by homeowner energy independence goals and federal tax credits that reduce total system costs by 26-30%. Europe follows with 32% market share, where standardized home storage designs have cut installation timelines by 55% compared to custom solutions. Asia-Pacific represents the fastest-growing region at 45% CAGR, with manufacturing innovations reducing system prices by 18% annually. Emerging markets are adopting residential storage for backup power and energy cost reduction, with typical payback periods of 4-7 years. Modern home installations now feature integrated systems with 10-30kWh capacity at costs below $700/kWh for complete residential energy solutions.
Technological advancements are dramatically improving home solar storage and inverter performance while reducing costs. Next-generation battery management systems maintain optimal performance with 40% less energy loss, extending battery lifespan to 15+ years. Standardized plug-and-play designs have reduced installation costs from $1,200/kW to $650/kW since 2022. Smart integration features now allow home systems to operate as virtual power plants, increasing homeowner savings by 35% through time-of-use optimization and grid services. Safety innovations including multi-stage protection and thermal management systems have reduced insurance premiums by 25% for solar storage installations. New modular designs enable capacity expansion through simple battery additions at just $600/kWh for incremental storage. These innovations have improved ROI significantly, with residential projects typically achieving payback in 5-8 years depending on local electricity rates and incentive programs. Recent pricing trends show standard home systems (5-10kWh) starting at $8,000 and premium systems (15-20kWh) from $12,000, with financing options available for homeowners.